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@ Start presenting to display the audience questions on this slide.



Announcements

HW 5 is out.
e |tis designed to be a light weight one for you to get ready for HW6

HWG6 is a mini-project of two people team

e Pick something you learned in this class and applied it in your scenario
To submit: A project report and source code

Project presentation in the last two lectures

Start forming team now!
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Learning Objectives

Learn the basics of Mixture-of-Expert Models

Understand various challenges of Mixture-of-Experts and methods to address them

Learn initial knowledge on when to use Mixture-of-Experts




Qutline

Mixture-of-Experts (MoE)
Motivation

Standard Configuration
Expert Routing

Expert Specialization
Remarks




Why Sparsity?

The power of deep learning comes from over-parameterization.
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Scaling up LLMs Exponentially Leads to Linear Accuracy Improvements [1]



Why Sparsity?

The power of deep learning comes from over-parameterization.

2.2
—— LLaMA 7B
2.1 —— LlLaMA 13B
? 2.0 —— LLaMA 33B
< LLaMA 65B
o 1.9
£
€ 1.8
©
= 1.7
1.6
1.5

0 200 400 600 800 1000 1200 1400
Billion of tokens

Accuracy

TriviaQA

20 T T T T T
0 250 500 750 1000 1250 1500
Billion of tokens

NaturalQuestions

35 1
30 A
25 A
20 A
15 A
10 A
5

b o e — T ———

0 T T T T T
0 250 500 750 1000 1250 1500

Billion of tokens

Scaling up LLMs Exponentially Leads to Linear Accuracy Improvements [1]

Is it the best utilization of parameters?




Why Sparsity?

Large language models are sparse, everywhere.,
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Sparsity of LLMs has been widely adopted in many applications:

e Pruning

e Distillation

e Efficient Serving

e Long-context Models




Why Sparsity?

Sparsity of LLMs has been widely adopted in many applications:
e Pruning

e Distillation

e Efficient Serving

e Long-context Models

All as an “after thought”:
* First pretrain a huge dense, but sparse, model
* Then make it more efficient through sparsity

CMU 11-667 Fall




Why Sparsity?

Sparsity of LLMs has been widely adopted in many applications:
e Pruning

e Distillation

e Efficient Serving

e Long-context Models

All as an “after thought”:
* First pretrain a huge dense, but sparse, model
* Then make it more efficient through sparsity

Can we leverage sparsity for efficient large scale pretraining?




Mixture-of-Experts to Leverage Sparisity

Conditional Computation for sparsity
e Only activate a part of the neural network
e But a different part of it conditioned on inputs
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Mixture-of-Experts to Leverage Sparisity

Conditional Computation for sparsity
e Only activate a part of the neural network
e But a different part of it conditioned on inputs

Conditioned on tokens
e Fach token activates different parts of the network

Applied on the FFEN layers
e Focus on making the FFNs sparse, the simplest and the heaviest part of LLMs
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Sparsely-Gated Mixture-of-Experts Layer

&plit one FFN into multiple (N) smaller FFNs (and name them experts)
E;(x) = FFN(x)

/MoE layer N
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Sparsely-Gated MoE Layer [3]




Sparsely-Gated Mixture-of-Experts Layer

&plit one FFN into multiple (N) smaller FFNs (and name them experts)
E;(x) = FFN(x)

Train a gating function to assign weights on experts p Eb
G'(x) = softmax (x - W) MOE layer

G(x), [ [G(X)pq

Expert 1
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Gating
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X
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Sparsely-Gated MoE Layer [3]
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Sparsely-Gated Mixture-of-Experts Layer

&plit one FFN into multiple (N) smaller FFNs (and name them experts)
E;(x) = FFN(x)

Train a gating function to assign weights on experts

G'(x) = softmax (x - W) (MoE layer CQ a

Pick top k experts to activate for this input M= (s
6(x) = TopK(G'(x)) Tl ]

Resulted in activated small FFNs per token: Y
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Sparsely-Gated MoE Layer [3]




Switch Transformers

Switch FFEN layers in Transformers to Mok layers
e Mixing the switch layers with dense FFNs in the Transformer

e FE.g, everyotherlayer
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Expert Degeneration

What if all tokens are routed to one expert?
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Expert Degeneration in Two Expert Language Models [5]
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Switch Transformers: Expert Load Balacing

&Kestrict the maximum tokens an expert can take in a batch

Tokens per batch

Expert Capacity = ( ) X Capacity Factor

number of experts
(Capacity Factor: 1.0) g (Capacity Factor: 1.5)

Expert 1 Expert2  Expert3 i Expert 1 Expert2  Expert3

Device 0 Device 1 Device 2

Device 0

Tokens Tokens

Expert Capacity Capping [4]




Switch Transformers: Expert Load Balacing

&Kestrict the maximum tokens an expert can take in a batch

Tokens per batch

Expert Capacity = ( ) X Capacity Factor

number of experts

Capacity Factor = 1: (Capacity Factor: 1.0)

e Absolute Uniform Allocation Epert1  Expert2  Expert3
Capacity Factor = 1.5: ' '
e Anexpert can take 1.5x token #

Tokens

(Capacity Factor: 1.5)

Expert 1 Expert 2 Expert 3

Device 0 Device 1 Device 2

Device 0

Tokens

Expert Capacity Capping [4]
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Switch Transformers: Expert Load Balacing

&Kestrict the maximum tokens an expert can take in a batch

Tokens per batch

Expert Capacity = ( ) X Capacity Factor

Capacity Factor = 1: (Capacity Factor: 1.0) g (Capacity Factor: 1.5)
e Absolute Uniform Allocation Exert1  Ewert2  Experts | Expertd
Capacity Factor = 1.5: : : |

e Anexpert can take 1.5x token #

number of experts

Expert 2 Expert 3

Device 0 Device 1 Device 2

What if token load > Expert Capacity?
e Skip this layer (lol)

Device 0

Tokens Tokens

Expert Capacity Capping [4]




Switch Transformers: Expert Load Balacing

&Kestrict the maximum tokens an expert can take in a batch

Tokens per batch

Expert Capacity = (

number of experts) X Capacity Factor

Ca pacity Factor = 1: (Capacity Factor: 1.0) (Capacity Factor: 1.5)

e Absolute Uniform Allocation Expert 1 Expert2  Expert3 Expert 1 Expert2  Expert3
Capacity Factor = 1.5: ' : ’

e Anexpert can take 1.5x token #

Device 0 Device 1 Device 2

What if token load > Expert Capacity?
e Skip this layer (lol)

Plus, additional load balancing loss:

N Tokens assigned toi ’
= . X
L=N 2=y Total Token Count 2x G'(%)

Device 0

Tokens ; Tokens

Expert Capacity Capping [4]




Switch Transformers: Empirical Performance

Performance by splitting FFN in T5 to different number of experts (1e-256e)
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Switch Transformers: Empirical Performance

Performance by splitting FFN in T5 to different number of experts (1e-256e)
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Switch Transformers: Empirical Performance

Performance by splitting FFN in T5 to different number of experts (1e-256e)
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Simple and Efficient Sparsity




Switch Transformers: Empirical Performance

Performance by splitting FFN in T5 to different number of experts (1e-256e)
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Motivation

Standard Configuration
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MoE: Challenges

Expert Routing
e How to match tokens and experts for both balanced load and maximum effectiveness?

Expert Specialization
e Are experts really “experts” on some specialized capability? Or it is just ensemble?

Infrastructure Efficiency
e Unigue challenges in training and serving
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MokE: Expert Routing

How to match tokens and experts?

Tokens
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Three Ways to Match Token-Expert [5]

P g = A I 7T 7

ning MU




MokE: Expert Routing

How to match tokens and experts?
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MokE: Expert Routing

How to match tokens and experts?

Tokens Tokens Tokens
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MokE: Expert Routing

Fach token goes to its top experts learned from the gating layer
Top-1 Routing
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MOoE: Expert Routing

Fach token goes to a deterministic expert using a hash function

Hash Routing
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MokE: Expert Routing
Expert chooses its top K tokens

Expert Chooses Tokens
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Expert Choice Routing

Using a gating layer per expert to learn the top tokens it selects
e [optional] add a constraints on maximum number of experts allowed per token
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Expert Choice Routing: Performance

Faster convergence versus token choice routing
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Expert Choice Routing: Performance

Learns to assign variant number of experts per token
e Important/informative tokens allowed more capacity
e Non informative tokens with reduced capacity
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MOoE: Expert Routing

Can be fancier with global matching of token-experts
e Not necessarily the simplest “bitter lesson” way

BASE Routing
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Are Experts Really Experts?

Expert routing naturally degenerates

e Does this mean the model does not want to learn experts?
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Expert Degeneration in Two Expert Language Models [5]
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ed Transformer with Stochastic Experts

Random Routing

What if we just randomly assign tokens to experts?
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Random Routing: Performance

Random routing yields stronger performance than learned gating!
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Random Routing: Performance

Random routing yields stronger performance than learned gating!
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Random (THOR) Routing on Machine Translation Tasks [5]

If randomly routed, there is no specialization by design.
More like a FFN level dropout!




Expert Under-Specialization: Why?

There are many attempts to enforce structure within deep neural networks
e Disentangled representations

e Incorporating symbolic information

e Mixture-of-experts

Not much success has observed

e Neural networks do not like these type of inductive biases

,,,,,,,,,,
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e Incorporating symbolic information
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Not much success has observed
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What are the challenges for specialized experts?
e Naturally, there are shared knowledge between tokens
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Expert Under-Specialization: Why?

There are many attempts to enforce structure within deep neural networks
e Disentangled representations

e Incorporating symbolic information

e Mixture-of-experts

Not much success has observed

e Neural networks do not like these type of inductive biases

What are the challenges for specialized experts?
e Naturally, there are shared knowledge between tokens

Shared
Common
Knowledge

Specialized Knowledge?
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DeepSeekMoE: Shared Experts

Adding shared experts in the mix

e All tokens go through the shared experts + its routed experts
|deally:
e Common knowledge captured in shared experts

Routed experts freed up to learn specialty

Output Hidden
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DeepSeekMoE: Shared Experts

Adding shared experts in the mix
e All tokens go through the shared experts + its routed experts

|deally:

e Common knowledge captured in shared experts
e Routed experts freed up to learn specialty

No explicit control of common versus special
e Onlyintroducing shared experts in architecture




DeepSeekMoE: Performance

Generalizes much better than no shared experts

Metric #Shot | GShardx1.5 Densex16 DeepSeekMoE
Relative Expert Size N/A 1.5 1 0.25
# Experts N/A 0+16 16 +0 1+63
# Activated Experts N/A 0+2 16 +0 1+7
# Total Expert Params N/A 2.83B 1.89B 1.89B
# Activated Expert Params  N/A 0.35B 1.89B 0.24B
FLOPs per 2K Tokens N/A 5.8T 24.6T 43T
# Training Tokens N/A 100B 100B 100B
Pile (Loss) N/A | 1.808 1.806 1.808
HellaSwag (Acc.) 0-shot 544 561 54.8
PIQA (Acc.) 0-shot 711 71.9 723
ARC-easy (Acc.) 0-shot 47.3 51.9 494
ARC-challenge (Acc.) 0-shot 34.1 33.8 34.3
RACE-middle (Acc.) 5-shot 46.4 46.3 44.0
RACE-high (Acc.) 5-shot 324 33.0 31.7
HumanEval (Pass@1) 0-shot 3.0 43 49
MBPP (Pass@1) 3-shot 2.6 22 2.2
TriviaQA (EM) 5-shot 15.7 16.5 16.6
NaturalQuestions (EM) 5-shot 47 6.3 5.7

Performance on Language Tasks [7]
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DeepSeekMoE: Performance

Almost achieving similar performance with dense model

Metric #Shot | GShardx1.5 Densex16 DeepSeekMoE
Relative Expert Size N/A 1.5 1 0.25
# Experts N/A 0+16 16 +0 1+63
# Activated Experts N/A 0+2 16 +0 1+7
# Total Expert Params N/A 2.83B 1.89B 1.89B
# Activated Expert Params ~ N/A 0.35B 1.89B 0.24B
FLOPs per 2K Tokens N/A 5.8T 24.6T 43T
# Training Tokens N/A 100B 100B 100B
Pile (Loss) N/A | 1.808 1.806 1.808
HellaSwag (Acc.) 0-shot 544 561 54.8
PIQA (Acc.) 0-shot 711 71.9 72.3
ARC-easy (Acc.) 0-shot 47.3 51.9 494
ARC-challenge (Acc.) 0-shot 34.1 33.8 34.3
RACE-middle (z ; 46.3 44.0
RACE-high (Acc If We view Mok as 33.0 31.7
HumanEval (Pa: maki ng a _de_nse model 43 49
MBPP (Pass@1) sparse, this is the 22 22
TriviaQA (EM) upper bou nd? 16.5 16.6
NaturalQuestior - S 6.3 5.7

Performance on Language Tasks [7]
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DeepSeekMoE: Performance

Significant benefit from shared expert

1.2
Il 0 shared expert + 2 out of 16 routed experts (GShard)

(

= 1 shared expert + 1 out of 15 routed experts (+ shared expert isolation)
(
(

N
-

I 1 shared expert + 3 out of 31 routed experts (+ fine-grained expert segmentation)
B 1 shared expert + 7 out of 63 routed experts (+ finer expert segmentation)

(T

HellaSwag PIQA ARC-easy ARC-challenge TriviaQA NaturalQuestions
Metrics
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o © o
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DeepSeekMoE: Expert Specialization?

How do we know if the experts are specialized?

If we remove the top routed experts per token, how

much worse the model become?

e |f experts are not specialized, other experts capture
similar information, thus model performance not
impact as much

e Otherwise, experts are more specialized

,,,,,,,,,,

CMU




DeepSeekMoE: Expert Specialization?

How do we know if the experts are specialized?

If we remove the top routed experts per token, how ° T oo

much worse the model become? g ==

e |f experts are not specialized, other experts capture
similar information, thus model performance not
impact as much

e Otherwise, experts are more specialized

» ~

Pile Loss
()]

0 1/16 2/16 3/16 4/16
Ratio of Disabled Top Routed Experts

Relative Loss when top experts are disabled.
T: expert more specialized [7]




DeepSeekMoE: Alignment

Empirical benefits hold after SFT alignment

Metric #Shot ’ LLaMA2 DeepSeek  DeepSeekMoE

SFT 7B Chat 7B Chat 16B
# Total Params N/A 6.7B 6.9B 16.4B
# Activated Params N/A 6.7B 6.9B 2.8B
FLOPs per 4K Tokens N/A 187.9T 183.5T 744T
HellaSwag (Acc.) 0-shot 67.9 71.0 72:2
PIQA (Acc.) 0-shot 76.9 784 79.7
ARC-easy (Acc.) 0-shot 69.7 70.2 69.9
ARC-challenge (Acc.) 0-shot 50.8 50.2 50.0
BBH (EM) 3-shot 39.3 43.1 422
RACE-middle (Acc.) 5-shot 63.9 66.1 64.8
RACE-high (Acc.) 5-shot 49.6 50.8 50.6
DROP (EM) 1-shot 40.0 41.7 33.8
GSMS8K (EM) 0-shot 63.4 62.6 62.2
MATH (EM) 4-shot 13.5 14.7 15.2
HumanEval (Pass@1) 0-shot 354 45.1 45.7
MBPP (Pass@1) 3-shot 27.8 39.0 46.2
TriviaQA (EM) 5-shot 60.1 59.5 63.3
NaturalQuestions (EM) 0-shot 35.2 32.7 35.1
MMLU (Acc.) O-shot |  50.0 49.7 472
WinoGrande (Acc.) 0-shot | 65.1 68.4 69.0
CLUEWSC (EM) 5-shot 484 66.2 68.2
CEval (Acc.) 0-shot 351 44.7 40.0
CMMLU (Acc.) 0-shot 36.9 51.2 493

Performance after SFT Alignment [7]

[7] Dai et al. 2024. Deep o Ultima ion in Mixture-of-Experts L.
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Hand-in-hand with Infrastructure

Expert provides another dim to parallel
e When lots of GPUs and perfectly balanced loads, then it comes nearly for free
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Hand-in-hand with Infrastructure

Single Device would not utilize its sparsity well
e Parameters still needs to be kept in GPU memory
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