

Please download and install the Slido app on all computers you use

(i) Start presenting to display the audience questions on this slide.

1

Announcements

HW 5 is out.

• It is designed to be a light weight one for you to get ready for HW6

HW6 is a mini-project of two people team

- Pick something you learned in this class and applied it in your scenario
- To submit: A project report and source code
- Project presentation in the last two lectures
- Start forming team now!

Carnegie Mellon University

Efficient Pretraining with Sparse Models

Large Language Models: Methods and Applications

Daphne Ippolito and Chenyan Xiong

Learning Objectives

Learn the basics of Mixture-of-Expert Models

Understand various challenges of Mixture-of-Experts and methods to address them

Learn initial knowledge on when to use Mixture-of-Experts

Outline

Mixture-of-Experts (MoE)

- Motivation
- Standard Configuration
- Expert Routing
- Expert Specialization
- Remarks

The power of deep learning comes from over-parameterization.

Scaling up LLMs Exponentially Leads to Linear Accuracy Improvements [1]

[1] Touvron et al. 2023. LLaMA: Open and Efficient Foundation Language Models.

The power of deep learning comes from over-parameterization.

Scaling up LLMs Exponentially Leads to Linear Accuracy Improvements [1]

Is it the best utilization of parameters?

Large language models are sparse, everywhere.

Sparsity in Pretrained OPT models [2]

Sparsity of LLMs has been widely adopted in many applications:

- Pruning
- Distillation
- Efficient Serving
- Long-context Models

Sparsity of LLMs has been widely adopted in many applications:

- Pruning
- Distillation
- Efficient Serving
- Long-context Models

All as an "after thought":

- First pretrain a huge dense, but sparse, model
- Then make it more efficient through sparsity

Sparsity of LLMs has been widely adopted in many applications:

- Pruning
- Distillation
- Efficient Serving
- Long-context Models

All as an "after thought":

- First pretrain a huge dense, but sparse, model
- Then make it more efficient through sparsity

Can we leverage sparsity for efficient large scale pretraining?

Mixture-of-Experts to Leverage Sparisity

Conditional Computation for sparsity

- Only activate a part of the neural network
- But a different part of it conditioned on inputs

Mixture-of-Experts to Leverage Sparisity

Conditional Computation for sparsity

- Only activate a part of the neural network
- But a different part of it conditioned on inputs

Conditioned on tokens

• Each token activates different parts of the network

Mixture-of-Experts to Leverage Sparisity

Conditional Computation for sparsity

- Only activate a part of the neural network
- But a different part of it conditioned on inputs

Conditioned on tokens

• Each token activates different parts of the network

Applied on the FFN layers

• Focus on making the FFNs sparse, the simplest and the heaviest part of LLMs

Solit one FFN into multiple (N) smaller FFNs (and name them experts) $E_i(x) = FFN(x)$

Solit one FFN into multiple (N) smaller FFNs (and name them experts) $E_i(x) = FFN(x)$

Train a gating function to assign weights on experts $G'(x) = \operatorname{softmax} (x \cdot W_g)$

Solit one FFN into multiple (N) smaller FFNs (and name them experts) $E_i(x) = FFN(x)$

Train a gating function to assign weights on experts $G'(x) = \operatorname{softmax} (x \cdot W_g)$

Pick top k experts to activate for this input G(x) = TopK(G'(x))

Solit one FFN into multiple (N) smaller FFNs (and name them experts) $E_i(x) = FFN(x)$

Train a gating function to assign weights on experts $G'(x) = \operatorname{softmax} (x \cdot W_g)$

Pick top k experts to activate for this input G(x) = TopK(G'(x))

Resulted in activated small FFNs per token: K/N e.g., 2/64

Switch Transformers

Switch FFN layers in Transformers to MoE layers

- Mixing the switch layers with dense FFNs in the Transformer
- E.g., every other layer

Switch Transformer [4]

Expert Degeneration

What if all tokens are routed to one expert?

Expert Degeneration in Two Expert Language Models [5]

Expert Capacity Capping [4]

Expert Capacity Capping [4]

Device 0

Tokens

Device 0

Tokens

Expert Capacity = $\left(\frac{\text{Tokens per batch}}{\text{number of experts}}\right) \times \text{Capacity Factor}$

Capacity Factor = 1:

- Absolute Uniform Allocation Capacity Factor = 1.5:
- An expert can take 1.5x token #

What if token load > Expert Capacity?

• Skip this layer (lol)

Expert Capacity Capping [4]

Restrict the maximum tokens an expert can take in a batch

Expert Capacity = $\left(\frac{\text{Tokens per batch}}{\text{number of experts}}\right) \times \text{Capacity Factor}$

Capacity Factor = 1:

- Absolute Uniform Allocation Capacity Factor = 1.5:
- An expert can take 1.5x token #

What if token load > Expert Capacity?

• Skip this layer (lol)

Plus, additional load balancing loss: $l = N \sum_{i=1}^{N} \frac{\text{Tokens assigned to i}}{\text{Total Token Count}} \times \sum_{x} G'(x)$

Expert Capacity Capping [4]

Performance by splitting FFN in T5 to different number of experts (1e-256e)

Language Modeling Loss on C4 [4]

Performance by splitting FFN in T5 to different number of experts (1e-256e)

Language Modeling Loss on C4 [4]

Performance by splitting FFN in T5 to different number of experts (1e-256e)

Language Modeling Loss on C4 [4]

Performance by splitting FFN in T5 to different number of experts (1e-256e)

Machine Translation Performance [4]

Please download and install the Slido app on all computers you use

() Start presenting to display the audience questions on this slide.

Outline

Mixture-of-Experts (MoE)

- Motivation
- Standard Configuration
- Expert Routing
- Expert Specialization
- Remarks

MoE: Challenges

Expert Routing

• How to match tokens and experts for both balanced load and maximum effectiveness?

Expert Specialization

• Are experts really "experts" on some specialized capability? Or it is just ensemble?

Infrastructure Efficiency

• Unique challenges in training and serving

How to match tokens and experts?

Tokens

Three Ways to Match Token-Expert [5]

How to match tokens and experts?

Three Ways to Match Token-Expert [5]

HIII

How to match tokens and experts?

Three Ways to Match Token-Expert [5]

Each token goes to its top experts learned from the gating layer

Each token goes to a deterministic expert using a hash function

Expert chooses its top K tokens

Expert Chooses Tokens

Expert Choice Routing

Using a gating layer per expert to learn the top tokens it selects

• [optional] add a constraints on maximum number of experts allowed per token

Comparison of token choice and expert choice routing [6]

Expert Choice Routing: Performance

Language Model Loss with Different Routing [6]

Expert Choice Routing: Performance

Learns to assign variant number of experts per token

- Important/informative tokens allowed more capacity
- Non informative tokens with reduced capacity

Number of Experts Assigned Per Token [6]

Can be fancier with global matching of token-experts

• Not necessarily the simplest "bitter lesson" way

Please download and install the Slido app on all computers you use

(i) Start presenting to display the audience questions on this slide.

Outline

Mixture-of-Experts (MoE)

- Motivation
- Standard Configuration
- Expert Routing
- Expert Specialization
- Remarks

Are Experts Really Experts?

Expert routing naturally degenerates

• Does this mean the model does not want to learn experts?

Expert Degeneration in Two Expert Language Models [5]

Random Routing

What if we just randomly assign tokens to experts?

Randomly Assign Tokens to Two Experts [5]

THH

Random Routing: Performance

Random routing yields stronger performance than learned gating!

Random (THOR) Routing on Machine Translation Tasks [5]

Random Routing: Performance

Random (THOR) Routing on Machine Translation Tasks [5]

If randomly routed, there is no specialization by design. More like a FFN level dropout!

Expert Under-Specialization: Why?

There are many attempts to enforce structure within deep neural networks

- Disentangled representations
- Incorporating symbolic information
- Mixture-of-experts

Not much success has observed

• Neural networks do not like these type of inductive biases

Expert Under-Specialization: Why?

There are many attempts to enforce structure within deep neural networks

- Disentangled representations
- Incorporating symbolic information
- Mixture-of-experts
- Not much success has observed
- Neural networks do not like these type of inductive biases

What are the challenges for specialized experts?

• Naturally, there are shared knowledge between tokens

Expert Under-Specialization: Why?

There are many attempts to enforce structure within deep neural networks

- Disentangled representations
- Incorporating symbolic information
- Mixture-of-experts

Not much success has observed

• Neural networks do not like these type of inductive biases

What are the challenges for specialized experts?

• Naturally, there are shared knowledge between tokens

Shared Common Knowledge Specialized Knowledge?

DeepSeekMoE: Shared Experts

Adding shared experts in the mix

• All tokens go through the shared experts + its routed experts

Ideally:

- Common knowledge captured in shared experts
- Routed experts freed up to learn specialty

Adding Shared Experts in MoE [7]

DeepSeekMoE: Shared Experts

Adding shared experts in the mix

• All tokens go through the shared experts + its routed experts

Ideally:

- Common knowledge captured in shared experts
- Routed experts freed up to learn specialty

No explicit control of common versus special

• Only introducing shared experts in architecture

Adding Shared Experts in MoE [7]

DeepSeekMoE: Performance

Generalizes much better than no shared experts

Metric	# Shot	GShard×1.5		.5	Dense ×16	Dee	DeepSeekMoE	
Relative Expert Size	N/A	1.5			1		0.25	
# Experts	N/A	0 + 16			16 + 0		1 + 63	
# Activated Experts	N/A	0 + 2			16 + 0		1 + 7	
# Total Expert Params	N/A		2.83B		1.89B		1.89B	
# Activated Expert Params	N/A		0.35B		1.89B		0.24B	
FLOPs per 2K Tokens	N/A		5.8T		24.6T		4.3T	
# Training Tokens	N/A		100B		100B		100B	
Pile (Loss)	N/A		1.808		1.806		1.808	
HellaSwag (Acc.)	0-shot		54.4		55.1		54.8	
PIQA (Acc.)	0-shot		71.1		71.9		72.3	
ARC-easy (Acc.)	0-shot		47.3		51.9		49.4	
ARC-challenge (Acc.)	0-shot		34.1		33.8		34.3	
RACE-middle (Acc.)	5-shot		46.4		46.3		44.0	
RACE-high (Acc.)	5-shot		32.4		33.0		31.7	
HumanEval (Pass@1)	0-shot		3.0		4.3		4.9	
MBPP (Pass@1)	3-shot		<mark>2.6</mark>		2.2		2.2	
TriviaQA (EM)	5-shot		15.7		16.5		16.6	
NaturalQuestions (EM)	5-shot		4.7		6.3		5.7	

Performance on Language Tasks [7]

DeepSeekMoE: Performance

Almost achieving similar performance with dense model

Metric	# Shot	GShard×1.5	Dense ×16	DeepSeekMoE
Relative Expert Size	N/A	1.5	1	0.25
# Experts	N/A	0 + 16	16 + 0	1 + 63
# Activated Experts	N/A	0 + 2	16 + 0	1 + 7
# Total Expert Params	N/A	2.83B	1.89B	1.89B
# Activated Expert Params	N/A	0.35B	1.89B	0.24B
FLOPs per 2K Tokens	N/A	5.8T	24.6T	4.3T
# Training Tokens	N/A	100B	100B	100B
Pile (Loss)	N/A	1.808	1.806	1.808
HellaSwag (Acc.)	0-shot	54.4	55.1	54.8
PIQA (Acc.)	0-shot	71.1	71.9	72.3
ARC-easy (Acc.)	0-shot	47.3	51.9	49.4
ARC-challenge (Acc.)	0-shot	34.1	33.8	34.3
RACE-middle (/ RACE-high (Acc			46.3	44.0
			33.0	31.7
HumanEval (Pa	g a der	ise model	4.3	4.9
MBPP (Pass@1) sparse, this is the			2.2	2.2
TriviaQA (EM) upper bound?			16.5	16.6
NaturalQuestion			6.3	5.7

Performance on Language Tasks [7]

DeepSeekMoE: Performance

Significant benefit from shared expert

DeepSeekMoE: Expert Specialization?

How do we know if the experts are specialized?

If we remove the top routed experts per token, how much worse the model become?

- If experts are not specialized, other experts capture similar information, thus model performance not impact as much
- Otherwise, experts are more specialized

DeepSeekMoE: Expert Specialization?

How do we know if the experts are specialized?

If we remove the top routed experts per token, how much worse the model become?

- If experts are not specialized, other experts capture similar information, thus model performance not impact as much
- Otherwise, experts are more specialized

DeepSeekMoE: Alignment

Empirical benefits hold after SFT alignment

Metric	# Shot	LLaMA2 SFT 7B	DeepSeek Chat 7B	DeepSeekMoE Chat 16B	
# Total Params	N/A	6.7B	6.9B	16.4B	
# Activated Params	N/A	6.7B	6.9B	2.8B	
FLOPs per 4K Tokens	N/A	187.9T	183.5T	74.4T	
HellaSwag (Acc.)	0-shot	67.9	71.0	72.2	
PIQA (Acc.)	0-shot	76.9	78.4	79.7	
ARC-easy (Acc.)	0-shot	69.7	70.2	69.9	
ARC-challenge (Acc.)	0-shot	50.8	50.2	50.0	
BBH (EM)	3-shot	39.3	43.1	42.2	
RACE-middle (Acc.)	5-shot	63.9	66.1	64.8	
RACE-high (Acc.)	5-shot	49.6	50.8	50.6	
DROP (EM)	1-shot	40.0	41.7	33.8	
GSM8K (EM)	0-shot	63.4	62.6	62.2	
MATH (EM)	4-shot	13.5	14.7	15.2	
HumanEval (Pass@1)	0-shot	35.4	45.1	45.7	
MBPP (Pass@1)	3-shot	27.8	39.0	46.2	
TriviaQA (EM)	5-shot	60.1	59.5	63.3	
NaturalQuestions (EM)	0-shot	35.2	32.7	35.1	
MMLU (Acc.)	0-shot	50.0	49.7	47.2	
WinoGrande (Acc.)	0-shot	65.1	68.4	69.0	
CLUEWSC (EM)	5-shot	48.4	66.2	68.2	
CEval (Acc.)	0-shot	35.1	44.7	40.0	
CMMLU (Acc.)	0-shot	36.9	51.2	49.3	

Performance after SFT Alignment [7]

Please download and install the Slido app on all computers you use

() Start presenting to display the audience questions on this slide.

Outline

Mixture-of-Experts (MoE)

- Motivation
- Standard Configuration
- Expert Routing
- Expert Specialization
- Remarks

Nested Models

- Nested Embeddings
- Nested Transformers

Expert provides another dim to parallel

• When lots of GPUs and perfectly balanced loads, then it comes nearly for free

How the model weights are split over cores

Data

How the *data* is split over cores

Expert provides another dim to parallel

• When lots of GPUs and perfectly balanced loads, then it comes nearly for free

How the model weights are split over cores

How the data is split over cores

alli

Expert provides another dim to parallel

• When lots of GPUs and perfectly balanced loads, then it comes nearly for free

How the model weights are split over cores

How the data is split over cores

ann

Expert provides another dim to parallel

• When lots of GPUs and perfectly balanced loads, then it comes nearly for free

How the model weights are split over cores

How the data is split over cores

CMU 11-667 Fall 2024

HIM.

Expert provides another dim to parallel

• When lots of GPUs and perfectly balanced loads, then it comes nearly for free

How the model weights are split over cores

How the data is split over cores

CMU 11-667 Fall 2024

unn.

Single Device would not utilize its sparsity well

• Parameters still needs to be kept in GPU memory

How the model weights are split over cores

How the data is split over cores

CMU 11-667 Fall 2024

HIII

Please download and install the Slido app on all computers you use

(i) Start presenting to display the audience questions on this slide.